Чему равна плотность железа. Плотность и удельный вес меди – единицы измерения, расчет веса. Основная информация о меди

В таблице представлены теплофизические свойства меди в зависимости от температуры в интервале от 50 до 1600 градусов Кельвина.

Плотность меди равна 8933 кг/м 3 (или 8,93 г/см 3) при комнатной температуре . Медь почти в четыре раза тяжелее и . Эти металлы будут плавать на поверхности жидкой меди. Значения плотности меди в таблице указаны в размерности кг/м 3 .

Зависимость плотности меди от ее температуры представлена в таблице. Следует отметить, что плотность меди при ее нагревании снижается как у твердого металла, так и у жидкой меди. Уменьшение значения плотности этого металла обусловлено его расширением при нагревании — объем меди увеличивается. Следует отметить, что жидкая медь имеет плотность около 8000 кг/м 3 при температурах до 1300°С.

Теплопроводность меди равна 401 Вт/(м·град) при комнатной температуре, что является довольно высоким значением , которое сравнимо с .

При 1357К (1084°С) медь переходит в жидкое состояние, что отражено в таблице резким падением значения коэффициента теплопроводности меди. Видно, что теплопроводность жидкой меди почти в два раза ниже, чем у твердого металла.

Теплопроводность меди при ее нагреве имеет тенденцию к снижению, однако при температуре выше 1400 К, значение теплопроводности снова начинает увеличиваться.

В таблице рассмотрены следующие теплофизические свойства меди при различных температурах:

  • плотность меди, кг/м 3 ;
  • удельная теплоемкость, Дж/(кг·град);
  • температуропроводность, м 2 /с;
  • теплопроводность меди, Вт/(м·К);
  • функция Лоренца;
  • отношение теплоемкостей.

Теплофизические свойства меди: КТР и удельная теплоемкость меди

Медь имеет сравнительно высокие теплоты плавления и кипения: удельная теплота плавления меди 213 кДж/кг; удельная теплота кипения меди 4800 кДж/кг.

В таблице ниже представлены некоторые теплофизические свойства меди в зависимости от температуры в интервале от 83 до 1473К. Значения свойств меди указаны при нормальном атмосферном давлении. Следует отметить, что удельная теплоемкость меди равна 381 Дж/(кг·град) при комнатной температуре, а теплопроводность меди равна 395 Вт/(м·град) при температуре 20°С.

Из значений коэффициента температурного расширения и теплоемкости меди в таблице видно, что нагрев этого металла приводит к росту этих величин. Например, теплоемкость меди при температуре 900°С становится равной 482 Дж/(кг·град).

В таблице даны следующие теплофизические свойства меди:

  • плотность меди, кг/м 3 ;
  • удельная теплоемкость меди, кДж/(кг·К);
  • коэффициент теплопроводности меди, Вт/(м·град);
  • удельное электрическое сопротивление, Ом·м;
  • линейный коэффициент теплового расширения (КТР), 1/град.

Источники:
1.
2. .

ОПРЕДЕЛЕНИЕ

Плотность вещества - это отношение его массы к объему:

M / V, [г/см 3 , кг/м 3 ]

Плотность твердого вещества - это справочная величина. Плотность меди равна 9,0 г/см 3 . В элементарном состоянии медь представляет собой металл красного цвета (рис.1). Её важнейшие константы представлены в таблице ниже:

Таблица 1. Физические свойства меди.

Медь характеризуется значительной плотностью, довольно высокой температурой плавления и малой твердостью. Её тягучесть и ковкость исключительно велика: медь можно вытянуть в проволоку диаметром в 0,001 мм (примерно в 50 раз тоньше человеческого волоса).

Рис. 1. Медь. Внешний вид.

Нахождение меди в природе

По распространенности в природе медь стоит далеко позади соответствующих щелочных металлов. Её содержание в земной коре оценивается величиной порядка 0,003% (масс.). Медь встречается главным образом в виде сернистых соединений и чаще совместно с сернистыми рудами других металлов. Из отдельных минералов меди наиболее важны халькопирит (CuFeS 2) и халькозин (Cu 2 S). Гораздо меньшее промышленное значение имеют кислородсодержащие минералы - куприт (Cu 2 O) и малахит ((CuOH) 2 CO 3).

Краткое описание химических свойств и плотность меди

Медь образует сплавы со многими металлами. В частности, она сплавляется с золотом, серебром и ртутью.

Химическая активность меди невелика. На воздухе она постоянно покрывается плотной зеленовато-серой пленкой основных углекислых солей. Соединяется с кислородом под обычным давлением и при нагревании:

4Cu + O 2 = 2CuO;

2Cu + O 2 = 2CuO.

Не реагирует с водородом, азотом и углеродом даже при высоких температурах.

При обычной температуре медь медленно соединяется с галогенами хлором, бромом и йодом:

Cu + Cl 2 = CuCl 2 ;

Cu + Br 2 = CuBr 2 .

Медь - слабый восстановитель; не реагирует с водой и разбавленной хлороводородной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода или цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», халькогенами и оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

Примеры решения задач

ПРИМЕР 1

Задание При действии на смесь меди и железа массой 20 г избытком соляной кислоты выделилось 5,6 л газа (н.у.). Определить массовые доли металлов в смеси.
Решение Медь не реагирует с соляной кислотой, поскольку стоит в ряду активности металлов после водорода, т.е. выделение водорода происходит только в результате взаимодействия кислоты с железом.

Запишем уравнение реакции:

Fe + 2HCl = FeCl 2 + H 2 .

Найдем количество вещества водорода:

n(H 2) = V(H 2) /V_m = 5,6 / 22,4 = 0,25 моль.

Согласно уравнению реакции:

n(H 2) = n(Fe) = 0,25 моль.

Найдем массу железа:

m(Fe)=n(Fe) ×M(Fe) = 0,25 × 56 = 14 г.

Рассчитаем массовые доли металлов в смеси:

w (Fe) = m(Fe) / m mixture = 14 / 20 = 0,7 = 70%.

w(Cu) = 100% - w(Fe) =100 - 70 = 30%.

Ответ Массовая доля железа в сплаве составляет 70%, меди - 30%.

Все металлы обладают определенными физико-механическими свойствами, которые, собственно говоря, и определяют их удельный вес. Чтобы определить, насколько тот или иной сплав черной или нержавеющий стали подходит для производства рассчитывается удельный вес металлопроката . Все металлические изделия, имеющие одинаковый объем, но произведенные из различных металлов, к примеру, из железа, латуни или алюминия, имеют различную массу, которая находится в прямой зависимости от его объема. Иными словами, отношение объема сплава к его массе - удельная плотность (кг/м3), является постоянной величиной, которая будет характерной для данного вещества. Плотность сплава рассчитывается по специальной формуле и имеет прямое отношение к расчету удельного веса металла.

Удельным весом металла называется отношение веса однородного тела из этого вещества к объему металла, т.е. это плотность, в справочниках измеряется в кг/м3 или г/см3. Отсюда можно вычислить формулу как узнать вес металла. Чтобы это найти нужно умножить справочное значение плотности на объем.

В таблице даны плотности металлов цветных и черного железа. Таблица разделена на группы металлов и сплавов, где под каждым наименованием обозначена марка по ГОСТ и соответствующая ей плотность в г/см3 в зависимости от температуры плавления. Для определения физического значения удельной плотности в кг/м3 нужно табличную величину в г/см3 умножить на 1000. Например, так можно узнать какова плотность железа - 7850 кг/м3.

Наиболее типичным черным металлом является железо. Значение плотности - 7,85 г/см3 можно считать удельным весом черного металла на основе железа. К черным металлам в таблице относятся железо, марганец, титан, никель, хром, ваннадий, вольфрам, молибден, и черные сплавы на их основе, например, нержавеющие стали (плотность 7,7-8,0 г/см3), черные стали (плотность 7,85 г/см3) в основном используют , чугун (плотность 7,0-7,3 г/см3). Остальные металлы считаются цветными, а также сплавы на их основе. К цветным металлам в таблице относятся следующие виды:

− легкие - магний, алюминий;

− благородные металлы (драгоценные) - платина, золото, серебро и полублагородная медь;

− легкоплавкие металлы – цинк, олово, свинец.

Удельный вес цветных металлов

Таблица. Удельный вес металлов, свойства, обозначения металлов, температура плавления

Наименование металла, обозначение
Атомный вес Температура плавления, °C Удельный вес, г/куб.см
Цинк Zn (Zinc) 65,37 419,5 7,13
Алюминий Al (Aluminium) 26,9815 659 2,69808
Свинец Pb (Lead) 207,19 327,4 11,337
Олово Sn (Tin) 118,69 231,9 7,29
Медь Cu (Сopper) 63,54 1083 8,96
Титан Ti (Titanium) 47,90 1668 4,505
Никель Ni (Nickel) 58,71 1455 8,91
Магний Mg (Magnesium) 24 650 1,74
Ванадий V (Vanadium) 6 1900 6,11
Вольфрам W (Wolframium) 184 3422 19,3
Хром Cr (Chromium) 51,996 1765 7,19
Молибден Mo (Molybdaenum) 92 2622 10,22
Серебро Ag (Argentum) 107,9 1000 10,5
Тантал Ta (Tantal) 180 3269 16,65
Железо Fe (Iron) 55,85 1535 7,85
Золото Au (Aurum) 197 1095 19,32
Платина Pt (Platina) 194,8 1760 21,45

При прокате заготовок из цветных металлов необходимо еще точно знать их химический состав, поскольку от него зависят их физические свойства.
Например, если в алюминии присутствуют примеси (хотя бы и в пределах 1%) кремния или железа, то пластические характеристики у такого металла будут гораздо хуже.
Другое требование к горячему прокату цветных металлов – это предельно точная выдержка температуры металла. К примеру, цинк требует при прокатке температуры строго 180 градусов - если она будет чуть выше или чуть ниже, капризный металл резко утратит пластичность.
Медь более «лояльна» к температуре (ее можно прокатывать при 850 – 900 градусах), но зато требует, чтобы в плавильной печи непременно была окислительная (с повышенным содержанием кислорода) атмосфера - иначе она становится хрупкой.

Таблица удельного веса сплавов металлов

Удельный вес металлов определяют чаще всего в лабораторных условиях, но в чистом виде они весьма редко применяются в строительстве. Значительно чаще находится применение сплавам цветных металлов и сплавам черных металлов, которые по удельному весу подразделяют на легкие и тяжелые.

Легкие сплавы активно используются современной промышленностью, из-за их высокой прочности и хороших высокотемпературных механических свойств. Основными металлами подобных сплавов выступают титан, алюминий, магний и бериллий. Но сплавы, созданные на основе магния и алюминия, не могут использоваться в агрессивных средах и в условиях высокой температуры.

В основе тяжелых сплавов лежит медь, олово, цинк, свинец. Среди тяжелых сплавов во многих сферах промышленности применяют бронзу (сплав меди с алюминием, сплав меди с оловом, марганцем или железом) и латунь (сплав цинка и меди). Из этих марок сплавов производятся архитектурные детали и санитарно-техническая арматура.

Ниже в справочной таблице приведены основные качественные характеристики и удельный вес наиболее распространенных сплавов металлов. В перечне представлены данные по плотности основных сплавов металлов при температуре среды 20°C.

Список сплавов металлов

Плотность сплавов
(кг/м 3)

Адмиралтейская латунь - Admiralty Brass (30% цинка, и 1% олова)

8525

Алюминиевая бронза - Aluminum Bronze (3-10% алюминия)

7700 - 8700

Баббит - Antifriction metal

9130 -10600

Бериллиевая бронза (бериллиевая медь) - Beryllium Copper

8100 - 8250

Дельта металл - Delta metal

8600

Желтая латунь - Yellow Brass

8470

Фосфористые бронзы - Bronze - phosphorous

8780 - 8920

Обычные бронзы - Bronze (8-14% Sn)

7400 - 8900

Инконель - Inconel

8497

Инкалой - Incoloy

8027

Ковкий чугун - Wrought Iron

7750

Красная латунь (мало цинка) - Red Brass

8746

Латунь, литье - Brass - casting

8400 - 8700

Латунь, прокат - Brass - rolled and drawn

8430 - 8730

Легкиесплавыалюминия - Light alloy based on Al

2560 - 2800

Легкиесплавымагния - Light alloy based on Mg

1760 - 1870

Марганцовистая бронза - Manganese Bronze

8359

Мельхиор - Cupronickel

8940

Монель - Monel

8360 - 8840

Нержавеющая сталь - Stainless Steel

7480 - 8000

Нейзильбер - Nickel silver

8400 - 8900

Припой 50% олово/ 50% свинец - Solder 50/50 Sn Pb

8885

Светлый антифрикционный сплав для заливки подшипников =
штейн с содержанием 72-78% Cu - White metal

7100

Свинцовые бронзы, Bronze - lead

7700 - 8700

Углеродистая сталь - Steel

7850

Хастелой - Hastelloy

9245

Чугуны - Cast iron

6800 - 7800

Электрум (сплав золота с серебром, 20% Au) - Electrum

8400 - 8900

Представленная в таблице плотность металлов и сплавов поможет вам посчитать вес изделия. Методика вычисления массы детали заключается в вычислении ее объема, который затем умножается на плотность материала, из которого она изготовлена. Плотность - это масса одного кубического сантиметра или кубического метра металла или сплава. Рассчитанные на калькуляторе по формулам значения массы могут отличаться от реальных на несколько процентов. Это не потому, что формулы не точные, а потому, что в жизни всё чуть сложнее, чем в математике: прямые углы - не совсем прямые, круг и сфера - не идеальные, деформация заготовки при гибке, чеканке и выколотке приводит к неравномерности ее толщины, и можно перечислить еще кучу отклонений от идеала. Последний удар по нашему стремлению к точности наносят шлифовка и полировка, которые приводят к плохо предсказуемым потерям массы изделия. Поэтому к полученным значениям следует относиться как к ориентировочным.

Плотность меди (чистой), поверхность которой имеет красноватый, а в изломе розоватый оттенок, высока. Соответственно, этот металл обладает и значительным удельным весом. Благодаря своим уникальным свойствам, в первую очередь отличной электро- и , медь активно используется для производства элементов электронных и электрических систем, а также изделий другого назначения. Кроме чистой меди, большое значение для многих отраслей промышленности имеют и ее минералы. Несмотря на то что в природе таких минералов существует более 170-ти видов, активное применение нашли только 17 из них.

Значение плотности меди

Плотность данного металла, которую можно посмотреть в специальной таблице, имеет значение, равное 8,93*10 3 кг/м 3 . Также в таблице можно увидеть и другую, не менее важную, чем плотность, характеристику меди: ее удельный вес, который тоже равен 8,93, но измеряется в граммах на см 3 . Как видите, у меди значение этого параметра совпадает со значением плотности, но не стоит думать, что это характерно для всех металлов.

Плотность этого, да и любого другого металла, измеряемая в кг/м 3 , напрямую влияет на то, какой массой будут обладать изделия, изготовленные из данного материала. Но для определения массы будущего изделия, изготовленного из меди или из ее сплавов, к примеру, из латуни, удобнее пользоваться значением их удельного веса, а не плотности.

Расчет удельного веса

На сегодняшний день разработано множество методик и алгоритмов измерения и расчета не только плотности, но и удельного веса, позволяющих даже без помощи таблиц определять этот важный параметр. Зная удельный вес, который у разных и чистого металла отличается, как и значение плотности, можно эффективно подбирать материалы для производства деталей с заданными параметрами. Такие мероприятия очень важно выполнять на стадии проектирования устройств, в составе которых планируется использовать детали, изготовленные из меди и ее сплавов.

Удельный вес, значение которого (как и плотности) можно посмотреть и в таблице - это отношение веса изделия, изготовленного как из металла, так и из любого другого однородного материала, к его объему. Выражается это отношение формулой γ=P/V, где буквой γ как раз и обозначается удельный вес.

Нельзя путать удельный вес и плотность, которые являются разными характеристиками металла по своей сути, хоть и обладают одинаковым значением для меди.

Зная удельный вес меди и используя формулу для расчета этой величины γ=P/V, можно определить массу медной заготовки, имеющей различной сечение. Для этого необходимо перемножить значение удельного веса для меди и объем рассматриваемой заготовки, определить который расчетным путем не представляет особой сложности.

Единицы измерения удельного веса

Для выражения удельного веса меди в различных системах измерения используются различные единицы.

  • В системе СГС данный параметр измеряется в 1 дин/см 3 .
  • В системе СИ принята единица измерения 1н/м 3 .
  • В системе МКСС используется единица измерения 1 кГ/м 3 .

Если вы столкнулись с различными единицами измерения этого параметра меди или ее сплавов, то не представляет сложности перевести их друг в друга. Для этого можно использовать простую формулу перевода, которая выглядит следующим образом: 0,1 дин/см 3 = 1 н/м 3 = 0,102 кГ/м 3 .

Расчет веса с использованием значения удельного веса

Чтобы вычислить вес заготовки, нужно определить площадь ее поперечного сечения, а затем умножить его на длину детали и на удельный вес.

Пример 1:

Рассчитаем вес прутка из медно-никелевого сплава МНЖ5-1, диаметр которого составляет 30 миллиметров, а длина — 50 метров.

Площадь сечения вычислим по формуле S=πR 2 , следовательно: S = 3,1415 · 15 2 = 706,84 мм 2 = 7,068 см 2

Зная удельный вес медно-никелевого сплава МНЖ5-1, который равен 8,7 гр/см 3 , получим: М = 7,068 · 8,7 · 5000 = 307458 грамм = 307,458 кг

Пример 2

Вычислим вес 28-ми листов из медного сплава М2, толщина которых составляет 6 мм, а размеры 1500х2000 мм.

Объем одного листа составит: V = 6 · 1500 · 2000 = 18000000 мм 3 = 18000 см 3

Теперь, зная, что удельный вес 1 см 3 меди марки М3 равен 8,94 гр/см 3 , можем узнать вес одного листа: M = 8,94 · 18000 = 160920 гр = 160,92 кг

Масса всех 28-ми листов проката составит: М = 160,92 · 28 = 4505,76 кг

Пример 3:

Вычислим вес прута квадратного сечения из медного сплава БрНХК длиной 8 метров и размер стороны 30 мм.

Определим объем всего проката: V = 3 · 3 · 800 = 7200 см 3

Удельный вес указанного жаропрочного сплава равен 8,85 гр/см 3 , следовательно общий вес проката составит: М = 7200 · 8,85 = 63720 грамм = 63,72 кг

Люди с давних времен используют медь в повседневной жизни. Очень важным параметром для современных людей является ее плотность и удельный вес.

Эти данные применяют в расчетах состава материалов в производстве различных коммуникаций, деталей, изделий и комплектующих в технической отрасли.

Основная информация о меди

Медь является наиболее распространенным цветным металлом. Свое название на латинском языке - Cuprum - она получила в честь острова Кипр. Там ее добывали древние греки тысячи лет назад. Историки даже придумали Медный Век , который длился с IV по V столетие до н. э. В то время люди делали из популярного металла:

  • орудие;
  • посуду;
  • украшения;
  • монеты.

В таблице Д.И. Менделеева она занимает 29 место. Этот элемент имеет уникальные свойства -физические, химические и механические. В древние времена в естественной среде можно было найти медь в виде самородков, порой очень больших размеров. Люди нагревали породу на открытом огне, а затем резко охлаждали. В результате она растрескивалась, что позволяло выполнять восстановление металла. Такая нехитрая технология позволила начать освоение популярного элемента.

Свойства

Медь - это цветной металл красноватого цвета с розовым отливом , наделенный высокой плотностью. В природе насчитывается более 170 видов минералов, имеющих в своем составе Cuprum. Только из 17 ведется промышленная добыча этого элемента. Основная масса этого химического элемента содержится в составе рудных металлов:

  • халькозина - до 80%;
  • бронита - до 65%;
  • ковелина - до 64%.

Из этих минералов осуществляется обогащение меди и ее выплавка. Высокая теплопроводность и электропроводность являются отличительными свойствами цветного металла. Он начинает плавиться при температуре 1063 о С, а закипает при 2600 о С. Марка Cuprum будет зависеть от способа производства. Металл бывает:

  • холоднотянутый;
  • прокатный;
  • литой.

Для каждого типа есть свои специальные параметрические расчеты, характеризующие степень сопротивления сдвигу, деформацию под воздействием нагрузок и сжатия, а также показатель упругости при растяжении материала.

Цветной металл активно окисляется в процессе нагревания. При температуре 385 о С формируется оксид меди. Ее содержание снижает теплопроводность и электропроводность других металлов. При взаимодействии с влагой металл образует куприт, с кислой средой - купорос.

Благодаря своим свойствам этот химический элемент активно используется в производстве электрических и электронных систем и многих других изделий другого назначения. Важнейшим свойством является его плотность в 1 кг на м 3 , поскольку с помощью этого показателя определяется вес производимого изделия. Плотность показывает отношение массы к общему объему.

Самой распространенной системой измерения единиц плотности является 1 килограмм на м 3 . Этот показатель для меди равняется 8,93 кг/м 3 . В жидком виде плотность будет на уровне 8,0 г/см 3 . Общий показатель плотности может меняться в зависимости от марки металла, имеющего различные примеси. Для этого используется удельный вес вещества. Он является очень важной характеристикой, когда речь идет о производстве материалов, в составе которых есть медь. Удельный вес характеризует отношение массы меди в общем объеме сплава.

Удельный вес меди будет равняться 8,94 г/см 3 . Параметры удельной плотности и веса у меди совпадают, однако такое совпадение не характерно для других металлов. Удельная масса очень важна не только при производстве изделий с ее содержанием, но и при переработке лома. Существует много методик, с помощью которых можно рационально подобрать материалы для формирования изделий. В международных системах СИ параметр удельного веса выражается в ньютонах на 1 единицу объема.

Очень важно все расчеты производить в стадии проектирования устройств и механизмов. Удельная плотность и вес являются разными значениями, но они обязательно используются для определения массы заготовок для различных деталей, в составе которых есть Cuprum.

Если сравнить плотность меди и алюминия , мы увидим большую разницу. У алюминия этот показатель составляет 2698,72 кг/м 3 в состоянии при комнатной температуре. Однако с повышением температуры параметры становятся другими. При переходе алюминия в жидкое состояние при нагревании плотность у него будет в пределах 2,55−2,34 г/см 3 . Показатель всегда зависит от содержания легирующих элементов в алюминиевых сплавах.

Технические показатели сплавов металлов

Наиболее распространенными сплавами на основе меди считаются латунь и бронза . Их состав формируется также из других элементов:

  • цинка;
  • никеля;
  • олова;
  • висмута.

Все сплавы различаются между собой структурой. Наличие олова в составе позволяет делать бронзовые сплавы отменного качества. В более дешевые сплавы входит никель либо цинк. Производимые материалы на основе Cuprum обладают следующими характеристиками:

  • высокая пластичность и износостойкость;
  • электропроводность;
  • устойчивость к агрессивной среде;
  • низкий коэффициент трения.

Сплавы на основе меди находят широкое применение в промышленном производстве. Из них производят посуду, ювелирные украшения, электропровода и системы отопления. Материалы с Cuprum часто используют для декорирования фасадной части домов, изготовления композиций. Высокая устойчивость и пластичность являются основными качествами для применения материала.

Понравилось? Лайкни нас на Facebook